

## **NOAA**FISHERIES

Southwest Fisheries Science Center

**Tim Sippel** 

# **Stock Assessment of Blue Sharks in the North Pacific**

An example of a 'data poor' international shark stock assessment

31 July 2013 Presentation 12.2



## Development of the assessment

- ISC Shark WG (met in Japan & USA: 2011-2013)
  - Develop and review catches by nation
  - Develop and review abundance indices
  - Review biological data
- USA, Japan, Chinese-Taipei, Mexico, Canada, IATTC, SPC, Korea, China
- Bayesian surplus production model (BSP)
  - Chosen based on knowledge of available data
  - Single stock (N. Pacific)
  - Uncertain catch & high bycatch
  - Catch & CPUE: 1971-2011
  - Size, growth, sex, tagging data not included
- Previous assessment (Kleiber et al 2009)
  - BSP and age-structured models



#### **Fisheries in North Pacific**





## Catch by country and gear



Japan: 68%

Taiwan: 24%

Mexico: 4%

Others: 4%

Longline: 82%

Drift gillnet: 14%

Others: 4%





#### **Catch scenarios**

 Catches by fishery & nation provided with base case and alternative discard mortality scenarios (Hi: 100% mortality / Low: 0% mortality)





#### **CPUE Indices**

- Seven candidate CPUE indices developed & evaluated based on common criteria (diagnostics, spatio-temporal coverage, etc.)
- Four were rejected by WG (poor diagnostics, inadequate spatial/temporal coverage)
- Three included
  - Base case: Japanese shallow longline "Kinkai" and "Enyo"

• Early: 1976-1993

• Late: 1994-2010

- Alternative: Hawaii deep-set
  - 1995-2011
  - Good diagnostics & temporal coverage
  - Small portion of catch & spatial scale





#### **Results: biomass trend**

- Not overfished and overfishing not occurring
- Exceeded MSY from early 1980's to early 1990's
- Current (2011) ~ 1.5 x  $B_{msy}$

Kobe plot (median): Base case







## **Sensitivity analysis**

Mostly robust to alternative parameter and Hi/Low catch scenarios

• Exception: Hawaii CPUE index (declining trend) results in very





 Under various catch policies: status quo catch is the 2006-2010 average

## 20 Year Biomass Projections for Base Case

 Under various F policies: status quo F is the 2006-2010 average



Projection (median trajectory) - Base case, const F and Fmsy





## **Strengths and Challenges**

#### Strengths

- Model robust to most plausible scenarios
- Data informative to model parameters and results (eg. results not overly driven by parameter assumptions)
- No major conflict with previous assessment found
- New catch data (Mexico, W. Coast USA, Canada)

#### Challenges

- Uncertainty in biological data (age-growth, spatial structure, movement)
- CPUE indices require more consideration (Hawaii and RTV indices)
- Better catch data (eg China): much derived from product of CPUE and effort (ie. catch not estimated independently).
- More catch data: No catches currently available from C. America
- Relative to other sharks, blue shark are 'data rich'. Less and lower quality data likely for other shark assessments (ie. mako, etc.)



## Strategies for improvement

- Age-sex structured model would better represent population dynamics
- Shark WG will continue age-growth research
- Size data would help
- Work with C. American & China to get more catch data
- Ongoing improvement to abundance indices (including Japan RTV)
- Spatial structure (Seki-Nakano hypothesis)

